\qquad

Higher Unit 16 topic test

Date:

Time: 50 minutes
Total marks available: 45
Total marks achieved: \qquad

Questions

Q1.

B and C are points on the circumference of a circle, centre O.
$A B$ and $A C$ are tangents to the circle.
Angle $B A C=40^{\circ}$.
Find the size of angle $B C O$.

Q2.
*

Diagram NOT accurately drawn
B, C and D are points on the circumference of a circle, centre O.
$A B$ and $A D$ are tangents to the circle.
Angle $D A B=50^{\circ}$
Work out the size of angle $B C D$.
Give a reason for each stage in your working.

Q3.

A, B and D are points on the circumference of a circle, centre O.
$B O D$ is a diameter of the circle.
$B C$ and $A C$ are tangents to the circle.
Angle $O C B=34^{\circ}$.
Work out the size of angle DOA.

Q4.

Diagram NOT accurately drawn
B, C and D are points on the circumference of a circle, centre O. $A B E$ and $A D F$ are tangents to the circle.

Angle $D A B=40^{\circ}$
Angle CBE $=75^{\circ}$
Work out the size of angle ODC.

Q5.

Diagram NOT

accurately drawn
A, B, C and D are points on the circumference of a circle, centre O. $A C$ is a diameter of the circle.
$A C$ and $B D$ intersect at E.
Angle $C A B=25^{\circ}$
Angle $D E C=100^{\circ}$
Work out the size of angle DAC.
You must show all your working.
\qquad。

Q6.

A and B are points on the circumference of a circle, centre O.
$A T$ is a tangent to the circle.
Angle $T A B=58^{\circ}$.
Angle $B T A=41^{\circ}$.

Calculate the size of angle OBT.
You must give reasons at each stage of your working.

Q7.

Diagram NOT accurately drawn
M and N are two points on the circumference of a circle centre O. The straight line $A M B$ is the tangent to the circle at M.

Angle $M O N=y$
Prove that angle $B M N=1 / 2 y$

Q8.
*

drawn
A, B and C are points on the circumference of the circle, centre O.
$T A$ and $T B$ are tangents to the circle.
$C A=C B$.
Angle $A T B=2 x^{\circ}$.
Prove that angle $A C B=(90-x)^{\circ}$.

Q9.
(a) On the grid, construct the graph of $x^{2}+y^{2}=16$

(b) Find estimates for the solutions of the simultaneous equations

$$
\begin{aligned}
x^{2}+y^{2} & =16 \\
y & =2 x+1
\end{aligned}
$$

Q10.

Here is a circle, centre O, and the tangent to the circle at the point $P(4,3)$ on the circle.

Find an equation of the tangent at the point P

Q11.

The line $/$ is a tangent to the circle $x^{2}+y^{2}=40$ at the point A. A is the point $(2,6)$.

The line / crosses the x-axis at the point P.
Work out the area of triangle OAP.

Examiner's Report

Q1.

Most students scored a mark for showing that either angle OBA or angle OCA was 90°, generally by indicating this on the diagram. However many students lost marks because they did not identify which angle they were finding when doing calculations. It was very common to see 360-90-90-40=140 without any indication that this was a calculation to find angle BOC. Just writing 140 in the correct place on the diagram would suffice. Others had no understanding of 3 letter angle notation. 20° was often seen on the diagram for angle $B C O$ but then 140° was written in the answer space. Students should be encouraged to write all calculated angles in the appropriate space on the diagram as this would greatly increase the number of method marks awarded.

Q2.

When asked to give reasons in a geometry questions, reasons must be correct and must use correct mathematical language. Reasons given in responses seen to this question were often incomplete or not completely correct. 'Angle between tangent and circle is 90° and 'angle at origin is twice the angle at the edge of the circle' are both examples where a communication mark was not awarded as the statements were not accurate enough. It is also important to ensure that the final answer is communicated properly. In this case the value of the angle had to be linked with the angle itself so sight of Angle $B C D=65^{\circ}$ (or similar) was expected rather than just to see a 65° somewhere amongst the candidate's working. Very few candidates used the alternate segment theorem as part of their explanation.

Q3.

This question testing circle geometry gave a good distribution of marks, with some candidates being able to recognise that the angle between a radius and a tangent is 90°, mostly seen on the diagram. A further small percentage were able to establish, by using a correct method, that angle AOC or angle BOC was 56° or that angle $A O B$ was 112°, while only a quarter could gain all 3 marks for a fully correct solution and identify the answer as 68°.

Some candidates incorrectly assumed $O C=B C$ and tried to use an isosceles triangle. Most candidates were not good at naming the angles that they were finding and as a consequence some lost marks by not identifying correctly which angle they were trying to calculate.

Q4.

There were a variety of methods to complete this problem with its complex configuration. The most common successful approach was to calculate the reflex angle $B O D$ and the angle at the circumference $B C D$, then use the angle sum of a quadrilateral together with angle $O B C=15^{\circ}$. Other approaches were rare. They included using the alternate segment theorem (although often wrongly applied), or using angle $B O C=150^{\circ}$ and angle $B O D=140^{\circ}$ followed by using angles round the point O and a suitable isosceles triangle.

In many cases candidates wrote down figures but did not relate them to the angles found. In this case the marks could often not be awarded unless the 55° was given as the answer. Many candidates sensibly put values of angles on the diagram and these were accepted as evidence of correct processes.

Q5.

There were many attempts at this question where students failed to show any knowledge of circle theorems, but rather made false assumptions about angles in order to provide some basic work. This included assuming there were isosceles triangles, where there were none. Some found $A B E$ to be 55°, but without the knowledge that ABC was 90° this got them nowhere useful.
Centres need to remind students that when working with geometry problems they need to either write the angles on the diagram, or if only presented in working, these workings need to clearly show which angles are being worked with.
Few students gained full marks.

Q6.

Most candidates were able to score some marks in this question. Many were able to find the size of the angle $O B T$, but few were able to state all the reasons for their choice of calculations or state them correctly. Furthermore, it was often unclear as to how particular calculations were related to the overall solution of the problem. Candidates should be reminded to clearly identify the angles they are calculating by either an appropriate angle notation (three letter notation here) or by annotating the diagram. A popular incorrect answer involved the erroneous identification of angle $A B T$ as 90°, ie incorrectly interpreting $B T$ as a tangent to the circle.

Q7.

Most candidates gained some credit in this question. Over time the performance has increased, with candidates becoming more aware of the need to give reasons for statements about angles. In this question not only was it necessary to show the 90° angle or state its position on the diagram, but also to justify it as "the angle between a tangent and radius is 90° ". Many candidates also went on to state further properties such as OMN and ONM being equal. Further than this required working with algebraic expressions, which was beyond the majority of candidates.

Q8.

Many candidates gained a mark for correctly identifying a right-angle at OAT and/or OBT even if they made no further progress. Others assumed CAT or CBT were 90° or even that ACB was. A variety of proofs were attempted but in this question where marks were awarded for Quality of Written Communication, it was essential that theorems were quoted accurately using correct mathematical language.

Q9.

There were some excellent solutions to this question showing an accurately constructed circle followed by the plotting of a suitable line and accurate reading off of the solutions of the simultaneous equations. Students who did not see the connection between parts (a) an (b) often began a solution using substitution but they rarely completed the question successfully. They struggled to manipulate the equations correctly. A small but significant group of students found the values of x but lost a mark because they did not find the corresponding values of y.

Q10.
No Examiner's Report available for this question

Q11.
No Examiner's Report available for this question

Mark Scheme

Q1.

PAPER: 5MB2H_01

| Question | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :---: | :---: | :--- |
| | | 20 | 3 | M1 for indication that angle between a tangent and
 radius is 90
 (could be seen on the diagram) |
| $\mathrm{M1}$ for $\mathrm{OAC}=20 \quad$ or $\mathrm{AOC}=70 \quad$ or
 $\mathrm{BOC}=140$ | | | | |
| or $\mathrm{ABC}=\mathrm{ACB} \quad$ or $\quad \mathrm{BCA}=\frac{180-40}{2}$ | | | | |
| $(=70)$ | | | | |
| A 1 cao | | | | |

Q2.

Qu	Working	Answer	Mark	Notes
	$\begin{aligned} & A B O=A D O=90^{\circ} \\ & \text { (Angle between tangent } \\ & \text { and radius is } \left.90^{\circ}\right) \\ & D O B=360-90-90- \\ & 50 \\ & \text { (Angles in a } \\ & \text { quadrilateral add up to } \\ & 360^{\circ} \text {) } \\ & B C D=130 \div 2 \\ & \text { (Angle at centre is twice } \\ & \text { angle at circumference) } \\ & \text { OR } \\ & A B D=(180-50) \div 2 \\ & \text { (Base angles of an } \\ & \text { isosceles triangle) } \\ & B C D=65 \\ & \text { (Alternate segment } \\ & \text { theorem) } \end{aligned}$	65°	4	B 1 for $A B O=90$ or $A D O=90$ (may be on diagram) B1 for $B C D=65$ (may be on diagram) $C 2$ for $B C D=65^{\circ}$ stated or $D C B=$ 65° stated or angle C $=65^{\circ}$ stated with all reasons: angle between tangent and radius is $\underline{90^{\circ}}$; angles in a quadrilateral sum to 360°; angle at centre is twice angle at circumference (accept angle at circumference is half ($\mathrm{or}_{1 / 2}$) the angle at the centre) (C1 for one correct and appropriate circle theorem reason) QWC: Working clearly laid out and reasons given using correct language OR B1 for $A B D=65$ or $A D B=65$ (may be on diagram) B1 for $B C D=65$ (may be on diagram) $C 2$ for $B C D=65^{\circ}$ stated or $D C B=$ 65° stated or angle C $=65^{\circ}$ stated with all reasons: base angles of an isosceles triangle are equal; angles in a triangle sum to 180°; tangents from an external point are equal; alternate segment theorem (C1 for one correct and appropriate circle theorem reason) QWC: Working clearly laid out and reasons given using correct language

Q3.

		Working	Answer	Mark	Notes
		68	3	M1 for angle $O B C=90^{\circ}$ or angle $O A C=$ 90° (may be marked on the diagram or used in subsequent working) M1 for correct method to find angle $B O C$ or $A O C$ or $A O B$ e.g. angle $B O C=180-90-34(=56)$ or angle $A O C=180-90-34(=56)$ or angle $A O B=180-2 \times 34(=112)$ A1 cao NB (68 must be clearly stated as an answer and not just seen on diagram)	

Q4.

PAPER: 1MA0_1H				
Question	Working	Answer	Mark	Notes
		55	3	M1 for angle $\mathrm{ABO}=90$ or angle $\mathrm{ADO}=90$, or angle $\mathrm{OBC}=15$ or angle $\mathrm{FDO}=90$ or angle $\mathrm{EBO}=90$ (could be marked on the diagram) M1 for reflex angle BOD $=360-(360-90-90-40)(=220)$ or angle $\mathrm{BCD}=(360-90-90-40) \div 2(=70)$ or angle BDO or angle $\mathrm{DBO}=90-(180-40) / 2(=20)$ or angle $\mathrm{BOC}=180-(15+15)(=150)$ A1 cao

Q5.

Q6.

PAPER: 5MB2H 01

Question		Working	Answer	Mark	Notes
$*$		113	5	B1 for stating angle $T A O=90$ M1 for stating angle $O B A$ or angle $O A B=$ $90-58(=32)$ M1 for stating angle $A B T=180-58-41$ $(=81)$ or angle $A O B=180-64(=116)$ A1 for 113 clearly identified as the answer C1 (dep on M1) for correct statements for method used: angle between tangent and radius $=\underline{90^{\circ}}$ AND at least one of base angles of an $\underline{\text { isosceles triangle are }}$equal sum of angles in a triangle is $\underline{180}$ sum of angles in a quadrilateral is $\underline{360}$	
NB angles may be seen in diagram					

Q7.

Question		Working	Answer	Mark	Notes
*			Proof	5	B1 for $O M=O N$ or ($O M N$ is) isosceles triangle or $\mathrm{OMB}=90^{\circ}$ or $\mathrm{AMO}=90^{\circ}$ B1 for $O M N=O N M$ or either $=1 / 2(180$ $-y$) oe B1 for (Angle) $B M N=90-" 1 / 2(180-$ y)" [if algebraic in y] C1 for statement angle between tangent and radius $=\underline{90^{\circ}}$ (or perpendicular or right angle) C 1 for correct conclusion with BMN stated, accompanied by correct working clearly laid out and in a logical sequence with correct calculations Acceptable alternative: B1 for angle at circumference $=1 / 2 y$ B1 for 'angle at centre is twice the angle at the circumference' oe B1 for angle $B M N=1 / 2 y$ C1 for statement 'alternate segment theorem' C 1 for correct conclusion with BMN stated, accompanied by correct working clearly laid out and in a logical sequence with correct calculations

Q8.

Question	Working	Answer	Mark	Notes
*	$A O T=90-x$ (Angle between tangent and radius is 90°) $A O C=90+x$ (Tangents from an external point are equal) $\begin{aligned} A C B & =2(180-(90+x)) \\ & \div 2=90-x \end{aligned}$ Or Obtuse angle $B O A=180$ $-2 x$ (Angle between tangent and radius is 90°) Reflex angle $B O A=180$ $+2 x$ (Tangents from an external point are equal) $A C B=(360-(180+$ $2 x)) \div 2-90-x$ Alternative method $A O B=360-2 x-90-90$		5	B1 for $A O T=90-x$ or $O A T=90^{\circ}$ or $O B T=90^{\circ}$ (may be shown on diagram) B1 for $A O C=90+x$ $B 1$ for completing the proof C2 for 2 reasons: Angle between tangent and radius is 90° and Tangents from an external point are equal. QWC: proof should be clearly laid out with technical language correct [C1 for 1 of: Angle between tangent and radius is 90° or Tangents from an external point are equal, QWC: proof should be clearly laid out with technical language correct] OR B1 for obtuse angle $B O A=180-$ $2 x$ $\text { or } O A T=90^{\circ} \text { or } O B T=90^{\circ} \text { (may }$ be shown on diagram) B1 for reflex angle $B O A=180+2 x$ B1 for completing the proof C2 for 2 reasons: Angle between tangent and radius is 90° and Tangents from an external point are equal. QWC: proof should be clearly laid out with technical language correct [C1 for 1 of: Angle between tangent and radius is 90° or Tangents from an external point are equal,

Q9.

PAPER: 1MA0 2H

Question	Working	Answer	Mark	Notes		
(a)		Circle drawn	2	B2 fully correct circle drawn (B1 for circle drawn with centre (0,0) or circle drawn with radius 4) OR M1 at least 5 correct points calculated and plotted		
A1 fully correct circle drawn						
(b)			 $x=1.4, y=3.8$ $x=-2.2, y=-3.4$	3		M1 for $y=2 x+1$ drawn or for elimination of
:---						
one variable						
A1 for one correct pair of values given or for						
$x=1.4,-2.2(\pm 0.2)$ or ft from graph						
provided 2 marks in (a)						
A1 for second correct pair of values given						
($\pm 0.2)$ or ft from graph provided 2 marks in						
(a)						

Q10.

Paper 1MA1: 2H				
Question	Working	Answer	Notes	
		$y=-\frac{4}{3} x$ $+\frac{25}{3}$ oe	M1	for method to find gradient of tangent,
			M1eg. $-1 \div \frac{3}{4}=-\frac{4}{3}$ for method to find y-intercept using $y="-\frac{4}{3} " x+c$	
		A1$y=-\frac{4}{3} x+\frac{25}{3}$ oe		

Q11.

Question	Working	Answer		Notes
		60	P1	process to start problem eg draw diagram and find gradient of $O A(=3)$
			P1	process to find equation of tangent with $m=-1 / \cdot 3$
		P1	process to find x-axis intercept of tangent	
		P1	process to find area of triangle cao	
			A1	

